
Lecture 2 - Outline

•  Theoretic foundations for dataflow analysis
•  Lattices, fixed point theorem
•  Convergence, complexity, precision, safety properties
•  References: Hecht book, Marlowe & Ryder Acta

Informatica 1990 paper

8/24/15	
 CS6304	
 BGR	
 1	

Theoretical Foundations of
Static Analysis

•  Dataflow analysis is definable as related to
abstract interpretation; we prefer to use the
more operational definition of dataflow
analysis

•  Lattice theory and partially ordered sets
•  Solution procedures for dataflow equations

–  Function properties for convergence
–  Fixed-point iteration
–  Worklist algorithm

8/24/15	
 CS6304	
 BGR	
 2	

8/24/15	
 CS6304	
 BGR	

Questions

•  How do we solve these dataflow eqns?
–  How do we know that a solution exists?
–  How do we know how quickly a solution can be found?

•  How do we formulate other useful dataflow
problems?
–  What do we need to define to formulate a dataflow

analysis?
•  How do we define dataflow problems that

involve method calls (interprocedural) to
prevent following infeasible paths?

3	

8/24/15	
 CS6304	
 BGR	

Answers
•  Firm, mathematical foundations underlie

dataflow analysis
•  Lattice theory, partially ordered sets
•  Functions with specific properties to ensure convergence

–  Fixed point theorem provides solution procedure
•  Specific fixed-point iteration procedure to find a solution

•  Serves as underpinnings of all static analyses in
compilation

•  But not necessary to explain all analyses using this
formalism

•  Need to understand there is mathematical justification for
dataflow analysis

4	

8/24/15	
 CS6304	
 BGR	

Lattice Theory

•  Partial ordering £
–  Relation between pairs of elements
–  Reflexive x £ x
–  Anti-symmetric x £ y, y £ x ⇒ x = y
–  Transitive x £ y, y £ z ⇒ x £ z

•  Partially ordered set (Set S, £)
•  0 Element 0 £ x, ∀ x ∈ S
•  1 Element 1 ≥ ∀ x ∈ S

A partially ordered set need not have 0 or 1 element.

5	

8/24/15	
 CS6304	
 BGR	

Lattice Theory

•  Greatest lower bound (glb)
a, b ∈ partially ordered set S, c ∈ S is glb(a, b)
if c £ a and c £ b then
for any z ∈ S, z £ a, z £ b ⇒ z £ c

if glb is unique it is called the meet (Λ) of a and b
•  Least upper bound (lub)

a, b ∈ partially ordered set S, c ∈ S is lub(a,b)
if c ≥ a and c ≥ b then
for any d ∈ S, d ≥ a, d ≥ b ⇒ c £ d.

if lub is unique is called the join (υ) of a and b

6	

8/24/15	
 CS6304	
 BGR	

Partially Ordered Set Example
{ a, b, c}

{ a,b} { b,c} {a,c}

{a} {b} {c}

{ }

lub

glb

U = { a,b,c}
partially ordered set is 2U

≤ is set inclusion

{a,b} and {b,c} are
 incomparable elements.

7	

8/24/15	
 CS6304	
 BGR	

Definition of a Lattice (L,Λ, υ)	

•  L, a partially ordered set under £ such that
every pair of elements has a unique glb (meet)
and lub (join).

•  A lattice need not contain an 0 or 1 element.
•  A finite lattice must contain an 0 and 1

element.
•  Not every partially ordered set is a lattice.
•  If a £ x, ∀ x ∈ L, then a is 0 element of L
•  If x £ a, ∀ x ∈ L, then a is 1 element of L

8	

8/24/15	
 CS6304	
 BGR	

a partially ordered set,
but not a lattice
3 4

1 2

0

There is no lub(3,4) in this
partially ordered set
so it is not a lattice.

9	

8/24/15	
 CS6304	
 BGR	

Examples of Lattices

•  H = (2U , ∩, ∪) where U is a finite set
–  glb (s1, s2) is (s1 Λ s2) which is s1 ∩ s2"
–  lub (s1, s2) is (s1 υ s2) which is s1 ∪ s2"
"

•  J = (N1 , gcd, lowest common multiple)
–  partial order relation is integer divide on N1

 n1 | n2 if division is even
–  lub (n1, n2) is n1 υ n2 = lowest common

multiple(n1,n2)
–  glb (n1,n2) is n1 Λ n2 = greatest common divisor

(n1,n2)

10	

8/24/15	
 CS6304	
 BGR	

Chain

•  A partially ordered set C where, for every pair of
elements

c1, c2 ∈ C, either c1 £ c2 or c2 £ c1.
 e.g., { } £ {a} £ {a,b} £ {a,b,c}
 and from the lattice as shown here,
 1 £ 2 £ 6 £ 30
 1 £ 3 £ 15 £ 30

30

6 15 10

3

1

2 5 Lattices are used in dataflow
analysis to argue the existence
of a solution obtainable through
fixed-point iteration.

	
 Finite length lattice: if every chain in lattice is finite

11	

8/24/15	
 CS6304	
 BGR	

Functions on a Lattice

•  (S,£) partially ordered set, f: S --> S is monotonic iff
   ∀ x, y ∈ S, x £ y ⇒ f(x) £ f(y)

•  Monotonic functions preserve domain element ordering
in their range values

•  Distributive functions allow function application to
distribute over the meet
	

 	

∀ x, y ∈ S, f(x) Λ f(y) = f(x Λ y)
   Classical dataflow problems are all distributive
   Distributive implies monotone (try to prove this)

x

y f(y)

f(x) f

12	

Solve by Fixed-point Iteration
Schema:

 Dataflow equations defined on each CFG node
 Initialize variables in equations.
 Find all nodes where the equations are not yet

satisfied, and assign new values to variables
 Continue until all equations are satisfied.

Why this works?
 Need valid choice of initial values.
 Need dataflow equations to define monotone

functions on the lattice of solutions
 Use the fixed-point theorem to justify convergence

Classical usage – bit vector problems in compilation

8/24/15	
 CS6304	
 BGR	
 13	

8/24/15	
 CS6304	
 BGR	

Fixed-point Iteration for Reach

initialize Reach(m) = ∅;
change = true;
while (change) do

{ change = false;
while (∃ j ∍ Reach(j) ≠ ∪ (Reach(m) ∩ pres(m) ∪ dgen(m)) do

 { Reach(j) = ∪ (Reach(m) ∩ pres(m) ∪ dgen(m)) ;

 change = true;
 }

}

m ∈ pred(j)

m ∈ pred(j)

14	

Advanced Dataflow Analysis

•  Why fixed-point iteration works?
•  Practical fixed-point algorithms
•  Properties of a solution to a dataflow analysis

problem
•  MOP versus MFP

•  Solution safety

8/24/15	
 CS6304	
 BGR	
 15	

8/24/15	
 CS6304	
 BGR	

Fixed point theorem - Why it works?

Intuition:
Given a 0 in lattice and monotonic function f, 0 £ f(0).
Apply f again and obtain

 0 £ f(0) £ f(f(0)) = f2 (0)
Continuing,
0 £ f(0) £ f2 (0) £ f3(0) £ ... £ fk(0)= fk+1(0) for a finite chain

lattice.
This is tantamount to saying
lim f k(0) exists and is called the least fixed point of f,

since f(f k(0)) = f k(0)
k ⇒ ∞	

k ⇒ ∞	

16	

8/24/15	
 CS6304	
 BGR	

Fixed Point Theorem

Thm: f: S --> S monotonic function on poset (S, £) with a 0 element
and finite length. The least fixed point of f is fk (0) where
 i. f0 (x) = x,
 ii. fi+1 (x) = f(fi(x)), i ≥ 0,
 iii. fk(0) = f(fk(0)) and this is the smallest k for which this is true.

•  For any p such that f(p)=p, fk(0) £ p.
•  Theorem justifies the iterative algorithm for global data flow

analysis for lattices & functions with right properties
•  Dual theorem exists for 1 element and maximal fixed point for k

such that fk(1) = fk+1(1).

17	

AVAIL
•  AVAIL meet operation is set intersection with

partial order subset inclusion
–  Why? recall that the 0 element a is such that

a ≤ x, ∀ x which means a is a subset of x!
•  Exprs = {<node, binary expression>},
 all Exprs in program
•  0 element ∅
•  1 element is Exprs

8/24/15	
 CS6304	
 BGR	
 ∅

expr1 expr k

Exprs

{expr1,expr2} {expr_k-1,expr_k}

{expr1,…,expr_k-1} {expr2,…,expr_k}

expr2

meet is ∩

18	

8/24/15	
 CS6304	
 BGR	

Reaching Definitions

•  REACH meet operation is set union with partial
order is ⊆ superset inclusion
–  Why? recall that the 0 element a is such that a ≤ x, ∀ x

which means a is a superset of x!
•  Defs = {<node,var>},
 all defs in program
•  0 element Defs
•  1 element is ∅

∅

def1 def k

Defs

{def1,def2} {def_k-1,defk}

{def1,…,def_k-1} {def2,…,defk}

meet is ∪

19	

8/24/15	
 CS6304	
 BGR	

Worklist Algorithm: A Practical Version
of Fixed-point Iteration

Reach(j) = ∪{ Reach(m) ∩ pres(m) ∪ dgen(m) }

Initialize all CFG nodes to ∅.
Put all nodes on the worklist W.
Loop: Do until W is empty{
 remove a node from the worklist W;
 calculate right-hand-side of above eqn;
 compare result with Reach(j)
 if result is different, {update Reach(j) and
 put descendent nodes of j on worklist W}
 }
 //when terminates have correct reaching definitions

solution at each node
"

m ∈ Pred(j)

20	

8/24/15	
 CS6304	
 BGR	

Monotone Dataflow Frameworks
•  Formalism for expressing and categorizing data flow

problems (Kildall, POPL 1973) <G, L, F, M>
–  G, flowgraph <N, E, ρ>
–  L, (semi-)lattice with meet Λ
•  usually assume L has a 0 and 1 element
•  finite chains

–  F, function space, ∀ f ∈ F, f: L --> L
•  Contains identity function
•  Closed under composition ∀ f, g ∈ F, f ° g ∈ F
•  Closed under point-wise meet, if h(x) = f(x) Λ g(x)

then h ∈ F
–  M : E --> F, maps an edge to a corresponding

transfer function that describes dataflow effect of
traversing that edge

21	

8/24/15	
 CS6304	
 BGR	

Function Properties that
Guarantee a Solution

•  Monotonicity
–  Defined as x £ y ⇒ f(x) ≤ f(y).
–  Equivalent formulation of definition

 f (x Λ y) £ f(x) Λ f(y)
•  Distributivity
–  If f (x Λ y) = f(x) Λ f(y) then f distributive
–  Distributivity implies monotonicity
–  Four classical bitvector problems are distributive

22	

8/24/15	
 CS6304	
 BGR	

Function Properties that
Specify Speed of Convergence

K-bounded: all contributions to
MFP solution occur prior to Kth
iteration

Fast: 1 pass around a cycle is
enough to summarize its
contribution to the dataflow
solution (e.g., reflexive transitive
closure is fast but not rapid)

Rapid: contribution of a cycle is
independent of value at entry
node; 1 pass around the cycle is
enough. All classical bitvector
problems are rapid

rapid

fast == 2
bounded

 K-bounded

23	

Meet Over all Paths Solution (MOP)

•  Imagine full knowledge of all possible
executions of a program and therefore all its
execution paths

•  Dataflow analysis summarizes what can happen
with respect to certain program properties –
over all possible program paths

•  Challenge: Deciding if a static execution path is
actually feasible is Turing complete.

•  So we assume all paths in our compile-time program
representation are executable

•  Some analyses have been developed to refine this assumption

8/24/15	
 CS6304	
 BGR	
 24	

8/24/15	
 CS6304	
 BGR	

MOP vs MFP

•  If distributive functions define the dataflow
problem, to obtain dataflow solution at node n,
can gather information on paths (e.g., P1, P2)
simultaneously without loss of precision.
–  e.g., fP1(0), fP2(0) needn’t be calculated explicitly

•  However, Kam and Ullman showed that this is
not true for all monotone functions; Kam,
Ullman, 1976,1977

•  Therefore, MFP only approximates MOP for
general monotone functions that are not
distributive.

25	

8/24/15	
 CS6304	
 BGR	

Safety of Dataflow Solution
•  Safe solution underestimates the actual dataflow

solution; x £ MOP is an approximate solution
•  Acceptable solution is one that contains a fixed point

of the function, y ≥ z where z is any fixed point.
•  If they exist, MOP is largest safe solution and MFP is

smallest acceptable solution.
•  Between MFP and MOP
are interesting solutions. 1 element

.

.
MOP
.
.
MFP
.
.

Safe
Acceptable

26	

8/24/15	
 CS6304	
 BGR	

Reaching Definitions

1 element

MOP

MFP

Safe solutions
contain the MOP

.

.

.

.

.

.

∅

def1 def k

Defs

{def1,def2} {def_k-1,defk}

{def1,…,def_k-1} {def2,…,defk}

27	

 REACH: it is safe to err by saying a definition reaches
 when it DOES NOT REACH.

E.g., this may inhibit dead code elimination transformations
But since REACH functions are distributive, MOP=MFP here

8/24/15	
 CS6304	
 BGR	

Available Expressions
meet is ∩

∅

expr1 expr2

{expr1,expr2} {expr2,expr3}

expr3

.

.

.

Exprs

expr_n …	

…	

{expr_n-1,expr_n}

.

.

.

.

.

.

{expr1,…,expr(n-1)} …	
 {exprn,…,expr2}

28	

 AVAIL: it is safe to err by saying an expression is NOT AVAILABLE when it might be.
This may inhibit common subexpression elimination transformations
Since AVAIL functions are distributive, MOP=MFP here

1 element

MOP

MFP

Safe solutions
contain the MOP

.

.

.

.

.

.

.

.

.

