
Lecture 2 - Outline 

•  Theoretic foundations for dataflow analysis 
•  Lattices, fixed point theorem 
•  Convergence, complexity, precision, safety properties 
•  References:  Hecht book, Marlowe & Ryder Acta 

Informatica 1990 paper 
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Theoretical Foundations of  
Static Analysis 

•  Dataflow analysis is definable as related to 
abstract interpretation; we prefer to use the 
more operational definition of dataflow 
analysis 

•  Lattice theory and partially ordered sets 
•  Solution procedures for dataflow equations 

–  Function properties for convergence 
–  Fixed-point iteration 
–  Worklist algorithm 

8/24/15	
  CS6304	
  BGR	
   2	
  



8/24/15	
  CS6304	
  BGR	
  

Questions 

•  How do we solve these dataflow eqns? 
–  How do we know that a solution exists? 
–  How do we know how quickly a solution can be found? 

•  How do we formulate other useful dataflow 
problems? 
–  What do we need to define to formulate a dataflow 

analysis? 
•  How do we define dataflow problems that 

involve method calls (interprocedural) to 
prevent following infeasible paths? 
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Answers 
•  Firm, mathematical foundations underlie 

dataflow analysis 
•  Lattice theory, partially ordered sets 
•  Functions with specific properties to ensure convergence 

–  Fixed point theorem provides solution procedure 
•  Specific fixed-point iteration procedure to find a solution 

•  Serves as underpinnings of all static analyses in 
compilation 

•  But not necessary to explain all analyses using this 
formalism 

•  Need to understand there is mathematical justification for 
dataflow analysis 
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Lattice Theory 

•  Partial ordering  £   
–  Relation between pairs of elements    
–  Reflexive   x £ x 
–  Anti-symmetric  x £ y, y £ x ⇒  x = y 
–  Transitive  x £ y, y £ z ⇒ x £ z 

•  Partially ordered set (Set S, £ ) 
•  0 Element  0 £  x, ∀ x ∈ S   
•  1 Element  1 ≥ ∀ x ∈  S 
 
A partially ordered set need not have 0 or 1 element. 
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Lattice Theory 

•  Greatest lower bound (glb) 
a, b ∈ partially ordered set S, c ∈ S is glb(a, b)  
if c £ a and c £ b then  
for any z ∈ S, z £ a, z £ b ⇒ z £  c 
 

if glb is unique it is called the meet (Λ) of a and b 
•  Least upper bound (lub) 

a, b ∈ partially ordered set S, c ∈ S is lub(a,b) 
if c ≥ a and c ≥ b then 
for any d ∈ S, d ≥ a, d ≥ b  ⇒ c £  d. 
 

if lub is unique is called the join (υ) of a and b 
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Partially Ordered Set Example 
{ a, b, c} 

{ a,b} { b,c} {a,c} 

{a} {b} {c} 

{ } 

lub 

glb 

U = { a,b,c} 
partially ordered set is 2U 

≤ is set inclusion 
 
{a,b} and {b,c} are 
 incomparable elements. 
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Definition of a Lattice (L,Λ, υ)	



•  L, a partially ordered set under £  such that 
every pair of elements has a unique glb (meet) 
and lub (join). 

•  A lattice need not contain an 0 or 1 element. 
•  A finite lattice must contain an  0 and 1 

element. 
•  Not every partially ordered set is a lattice. 
•  If a £  x, ∀ x ∈ L, then a is 0 element of L 
•  If x £  a, ∀ x ∈ L, then a is 1 element of L 
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a partially ordered set,  
but not a lattice 
3 4 

1 2 

0 

There is no lub(3,4) in this  
partially ordered set  
so it is not a lattice. 
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Examples of Lattices 

•  H  = ( 2U , ∩, ∪ ) where U is a finite set 
–  glb (s1, s2) is (s1 Λ s2) which is s1 ∩ s2"
–  lub (s1, s2) is (s1 υ s2) which is s1 ∪ s2"
"

•  J = ( N1 , gcd, lowest common multiple) 
–  partial order relation is integer divide on N1  

 n1 |  n2 if division is even 
–  lub (n1, n2) is n1 υ  n2 = lowest common 

multiple(n1,n2) 
–  glb (n1,n2) is n1 Λ n2 = greatest common divisor 

(n1,n2) 
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Chain 

•  A partially ordered set C where, for every pair of 
elements  

c1, c2 ∈ C, either c1 £ c2 or c2 £ c1. 
 e.g.,  {  }  £   {a}  £  {a,b} £  {a,b,c} 
 and from the lattice as shown here,  
  1 £  2 £  6 £  30 
  1 £  3 £  15 £  30 

30 

6 15 10 

3 

1 

2 5 Lattices are used in dataflow 
analysis to argue the existence  
of a solution obtainable through  
fixed-point iteration. 

	
  Finite length lattice: if every chain in lattice is finite 
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Functions on a Lattice 

•  (S,£) partially ordered set, f: S --> S is monotonic iff 
   ∀ x, y ∈ S,  x £ y ⇒ f(x) £ f(y) 

•  Monotonic functions preserve domain element ordering 
in their range values 

•  Distributive functions allow function application to 
distribute over the meet 
	

 	

∀ x, y ∈ S,  f(x) Λ f(y) =  f(x Λ y) 
   Classical dataflow problems are all distributive 
   Distributive implies monotone (try to prove this) 

 

x 

y f(y) 

f(x) f 
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Solve by Fixed-point Iteration 
Schema: 

 Dataflow equations defined on each CFG node 
 Initialize variables in equations. 
 Find all nodes where the equations are  not yet 

satisfied, and assign new values to variables 
 Continue until all equations are satisfied. 

Why this works? 
 Need valid choice of initial values. 
 Need dataflow equations to define monotone 

functions on the lattice of solutions 
 Use the fixed-point theorem to justify convergence 

Classical usage – bit vector problems in compilation 
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Fixed-point Iteration for Reach 

initialize Reach(m) = ∅; 
change = true; 
while (change) do 

{ change = false; 
while ( ∃ j ∍ Reach(j) ≠ ∪ (Reach(m) ∩ pres(m) ∪ dgen(m))   do  

 
 {   Reach(j) =  ∪  (Reach(m) ∩ pres(m) ∪ dgen(m)) ; 

 
   
   change = true;  
 } 

} 
 
 

m ∈ pred(j) 

m ∈ pred(j) 
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Advanced Dataflow Analysis 

•  Why fixed-point iteration works? 
•  Practical fixed-point algorithms 
•  Properties of a solution to a dataflow analysis 

problem 
•  MOP versus MFP 

•  Solution safety 
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Fixed point theorem - Why it works?  

Intuition: 
Given a 0 in lattice and monotonic function f,   0 £ f(0). 
Apply f again and obtain 

 0 £ f(0) £ f(f(0)) = f2 (0) 
Continuing, 
0 £  f(0) £  f2 (0) £  f3(0) £ ... £ fk(0 )= fk+1(0) for a finite chain 

lattice. 
This is tantamount to saying  
lim f k(0) exists and is called the least fixed point  of f, 
 
since f(f k(0)) = f k(0)  
k ⇒ ∞	



k ⇒ ∞	
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Fixed Point Theorem 

Thm: f: S --> S monotonic function on poset (S, £) with a 0 element 
and finite length. The least fixed point of f is fk (0) where  
  i. f0 (x) = x,  
  ii. fi+1 (x) = f(fi(x)), i ≥ 0,  
  iii. fk(0) = f(fk(0)) and this is the smallest k for which this is true. 
  

•  For any p such that f(p)=p, fk(0) £ p. 
•  Theorem justifies the iterative algorithm for global data flow 

analysis for lattices & functions with right properties 
•  Dual theorem exists for 1 element and maximal fixed point for k 

such that fk(1) = fk+1(1). 
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AVAIL 
•  AVAIL meet operation is set intersection with 

partial order subset inclusion 
–  Why? recall that the 0 element a is such that  

a ≤ x, ∀ x which means a is a subset of x!  
•  Exprs = {<node, binary expression>},  
   all Exprs in program 
•  0 element ∅ 
•  1 element is Exprs 
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expr1 expr k 

Exprs 

{expr1,expr2} {expr_k-1,expr_k} 

{expr1,…,expr_k-1} {expr2,…,expr_k} 

expr2 

meet is ∩  

18	
  



8/24/15	
  CS6304	
  BGR	
  

Reaching Definitions 

•  REACH meet operation is set union with partial 
order  is ⊆ superset inclusion 
–  Why? recall that the 0 element a is such that a ≤ x, ∀ x 

which means a is a superset of x!  
•  Defs = {<node,var>},  
   all defs in program 
•  0 element Defs 
•  1 element is ∅ 

∅ 

def1 def k 

Defs 

{def1,def2} {def_k-1,defk} 

{def1,…,def_k-1} {def2,…,defk} 

meet is ∪ 
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Worklist Algorithm: A Practical Version 
of Fixed-point Iteration 

Reach(j) = ∪{ Reach(m) ∩ pres(m) ∪ dgen(m) } 
 
 
Initialize all CFG nodes to ∅. 
Put all nodes on the worklist W. 
Loop: Do until W is empty{ 
        remove a node from the worklist W; 
        calculate right-hand-side of above eqn; 
        compare result with Reach(j) 
           if result is different, {update Reach(j) and 
              put descendent nodes of j on worklist W} 
        }  
 //when terminates have correct reaching definitions 

solution at each node 
"

m ∈ Pred(j) 
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Monotone Dataflow Frameworks 
•  Formalism for expressing and categorizing data flow 

problems (Kildall, POPL 1973)  <G, L, F, M> 
–  G, flowgraph <N, E, ρ> 
–  L, (semi-)lattice with meet Λ 
•  usually assume L has a 0 and 1 element 
•  finite chains 

–  F, function space,  ∀ f  ∈ F, f: L --> L 
•  Contains identity function 
•  Closed under composition  ∀ f, g ∈ F, f ° g ∈ F 
•  Closed under point-wise meet, if h(x) = f(x) Λ g(x) 

then h ∈ F 
–  M : E --> F, maps an edge to a corresponding 

transfer function that describes dataflow effect of 
traversing that edge  
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Function Properties that  
Guarantee a Solution 

•  Monotonicity 
–  Defined as x £  y ⇒  f(x)  ≤  f(y). 
–  Equivalent formulation of definition  

 f (x Λ y) £ f(x) Λ f(y) 
•  Distributivity 
–  If f (x Λ y) = f(x) Λ f(y) then f distributive 
–  Distributivity implies monotonicity 
–  Four classical bitvector problems are distributive 
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Function Properties that  
Specify Speed of Convergence 

K-bounded:  all contributions to 
MFP solution occur prior to Kth 
iteration 

Fast: 1 pass around a cycle is 
enough to summarize its 
contribution to the dataflow 
solution (e.g., reflexive transitive 
closure is fast but not rapid) 

Rapid: contribution of a cycle is 
independent of value at entry 
node; 1 pass around the cycle is 
enough. All classical bitvector 
problems are rapid 

 

rapid 

fast == 2 
bounded 

 K-bounded 
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Meet Over all Paths Solution (MOP)  

•  Imagine full knowledge of all  possible 
executions of a program and therefore all its 
execution paths 

•  Dataflow analysis summarizes what can happen 
with respect to certain program properties – 
over all possible program paths 

•  Challenge: Deciding if a static execution path is 
actually feasible is Turing complete. 

•  So we assume all paths in our compile-time program 
representation are executable 

•  Some analyses have been developed to refine this assumption 
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MOP vs MFP 

•  If distributive functions define the dataflow 
problem, to obtain dataflow solution at node n, 
can gather information on paths (e.g., P1, P2) 
simultaneously without loss of precision. 
–  e.g., fP1(0), fP2(0) needn’t be calculated explicitly  

•  However, Kam and Ullman showed that this is 
not true for all monotone functions; Kam, 
Ullman, 1976,1977  

•  Therefore, MFP only approximates MOP for 
general monotone functions that are not 
distributive. 
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Safety of Dataflow Solution 
•  Safe solution underestimates the actual dataflow 

solution;  x £ MOP is an approximate solution 
•  Acceptable solution is one that contains a fixed point 

of the function, y ≥ z where z is any fixed point. 
•  If they exist, MOP is largest safe solution and MFP is 

smallest acceptable solution. 
•  Between MFP and MOP  
are interesting solutions. 1 element 

. 

. 
MOP 
. 
. 
MFP 
. 
. 
 

Safe 
Acceptable 
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Reaching Definitions 

1 element 

MOP 

MFP 

Safe solutions  
contain the MOP 

. 

. 

. 

. 

. 

. 

∅ 

def1 def k 

Defs 

{def1,def2} {def_k-1,defk} 

{def1,…,def_k-1} {def2,…,defk} 
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  REACH: it is safe to err by saying a definition reaches  
  when it DOES NOT REACH.   

E.g., this may inhibit dead code elimination transformations 
But since REACH functions are distributive, MOP=MFP here  
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Available Expressions 
meet is ∩ 

∅ 

expr1 expr2 

{expr1,expr2} {expr2,expr3} 

expr3 

. 

. 

. 

Exprs 

expr_n …	
  

…	
  

{expr_n-1,expr_n} 

. 

. 

. 

. 

. 

. 

{expr1,…,expr(n-1)} …	
   {exprn,…,expr2} 
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  AVAIL: it is safe to err by saying an expression is NOT AVAILABLE when it might be.  
This may inhibit common subexpression elimination transformations  
Since AVAIL functions are distributive, MOP=MFP here 

 

1 element 

MOP 

MFP 

Safe solutions  
contain the MOP 

. 

. 

. 

. 

. 

. 

. 

. 

. 


